
Wrapping Rings in Lattices: An Algebraic Symbiosis of
Incremental View Maintenance and Eventual

Consistency
Conor Power
UC Berkeley

conorpower@cs.berkeley.edu

Saikrishna Achalla
UC Berkeley

saikrishna.achalla@berkeley.edu

Ryan Cottone
UC Berkeley

rcottone@berkeley.edu

Nathaniel Macasaet
UC Berkeley

nmacasaet1003@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

Abstract
We reconcile the use of semi-lattices in CRDTs and the use 
of groups and rings in incremental view maintenance to con-
struct systems with strong eventual consistency, incremental 
computation, and database query optimization.

Keywords: distributed systems, eventual consistency, incre-
mental view maintenance, query optimization, algebraic sys-
tems
ACM Reference Format:
Conor Power, Saikrishna Achalla, Ryan Cottone, Nathaniel Macasaet, 
and Joseph M. Hellerstein. 2024. Wrapping Rings in Lattices: An 
Algebraic Symbiosis of Incremental View Maintenance and Even-
tual Consistency. In The 11th Workshop on Principles and Practice of 
Consistency for Distributed Data (PaPoC ’24), April 22, 2024, Athens, 
Greece. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/ 
3642976.3653031

1 Introduction
Algebraic models have been growing in popularity recently 
in both distributed systems and databases. In distributed 
systems, the semi-lattice model popularized as conflict-free 
replicated data types (CRDTs) offers an algebraic perspective 
on strong eventual consistency. In the database community, 
a generalization of relational algebra to semi-rings was pro-
moted in the study of database provenance and a similar 
view in terms of full rings has been used to study database 
incremental view maintenance (IVM) [8, 18]. Both the dis-
tributed model of semi-lattices and the incremental view-
maintenance model of rings have seen significant attention 
in building prototype systems such as the Anna distributed
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key-value store [30, 31] and the DBToaster Incremental view
maintenance system [18].
Our research group at Berkeley is building an optimizer

for distributed systems [9] and in the interest of building the
best optimizer possible, we are concerned with incorporating
the learnings from both of these lines of work into a single
system. Initially, these two different approaches seemed mu-
tually exclusive. Lattices grow monotonically while groups
and rings require an inverse operation that is provably non-
monotone. This paper is about how to fit these two puzzle
pieces together.
The solution is not to try to get them to work together

in one structure, but to separate them out into different lay-
ers that operate independently and only interact through a
translation layer. This layered approach lines up with the sep-
aration of concerns that each structure is meant to deal with
in a distributed system. The role of CRDTs and lattices is to
ensure robustness to nondeterminism on our asynchronous
network. The group and ring approaches were designed for
single-node systems and play no role in the network layer of
our system. By separating these, we get the benefits of the
lattice at the network layer and the benefits of the groups
and rings at the query processing layer.
The remainder of this paper is organized as follows: In

Section 2, we give background on semi-lattices (CRDTs) for
strong eventual consistency and on the use of abelian groups
in incremental view maintenance. In Section 3, we show
why the strawman of combining groups and lattices into one
structure fails and then give two constructions for the co-
habitation of semi-lattices and abelian groups. In Section 4,
we give background on rings in IVM. In Section 5, we discuss
the different deletion semantics used in IVM and CRDTs. In
Section 6, we discuss future work on algebra-aware data sys-
tems. In Section 7, we discuss related work, particularly op-
based CRDTs and 𝛿-CRDTs. Appendix A gives background
on abstract algebra and Appendix B shows why a strawman
for combining rings and lattices into one structure fails.
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2 Background
In this section, we give necessary background on semi-lattices
for CRDTs and abelian groups for incremental view main-
tenance. Definitions of mathematical terms from abstract
algebra are provided in Appendix A. Feel free to skip these
sections if you are already familiar with these topics.

2.1 Semi-Lattices and Conflict-Free Replicated Data
Types

Conflict-free replicated data types (CRDTs) are a popular
interface for designing systems with strong eventual consis-
tency of writes. In simple terms, this consistency guarantee
means that all replicas in a system will converge to the same
state as long as all updates eventually propagate to them.
The interface that CRDTs provide is an object-oriented one
with roots in abstract algebra. A state based CRDT requires
that a user defines two operations on their state: an update
operation for changes to the state from outside the system
(e.g. from users), and a merge operation for replicas to com-
bine the updates they have seen into one state. By satisfying
certain algebraic properties in the selection of update and
merge operations, a developer is guaranteed strong eventual
consistency of the replica state via gossip communication
over an asynchronous computer network [26, 27].

The requirements on the CRDT operations are that merge
is associative, commutative, and idempotent and that update is
monotone with respect to the ordering induced by the merge
operation (see Appendix A for definitions). An algebraic
structure that is associative, commutative, and idempotent
is called a semi-lattice, so the state-based CRDT model offers
us an algebraic lens on eventual consistency in distributed
systems.
The reason for these three requirements on the merge

operation of CRDTs is that they each provide protection
against different sources of nondeterminism on the commu-
nication network. Associativity gives the system robustness
to arbitrary batching, commutativity gives robustness to
different interleaving or reordering of messages on the net-
work, and idempotence gives robustness to messages being
delivered multiple times or being "retried". The power of this
robustness is that without coordination replicas can process
updates and guarantee eventual convergence. This allows
geo-replicated systems to service requests with local latency
without sacrificing availability or consistency under network
partitions (circumventing the CAP Theorem [5]). Note that
all of the problems CRDTs are solving revolve around prob-
lems with asynchronous network communication.

A common example of a CRDT is a set. Merge is performed
via set union which is associative, commutative, and idem-
potent. The update operation is also set union, so an update
can add an element to the set and all replicas will eventually
converge to exactly the set of individual updates applied
across the replicas.

An alternative view of CRDTs that is common in the lit-
erature is operation-based CRDTs [26, 27]. We discuss the
connections between IVM and operation-based CRDTs in
Section 6, but they are not the focus of this paper, as they
are not based on semi-lattices.

2.2 Groups and Incremental View Maintenance
Incremental view maintenance (IVM) is the study of how to
efficiently maintain query answers over a database as the
contents of the database gets updated over time. They have
been studied in academia for decades and their techniques
have been commercialized in a number of database systems
including Materialize [19], Feldera [7], Azure Synapse [28],
Amazon Redshift [4], and Databricks [22]. They continue to
be a popular topic of academic research in the database com-
munity [12, 16, 18, 21] and were the topic of the 2023 VLDB
best paper award [8]. For an excellent survey of incremental
view maintenance see [10].

For simplicity of explanation, we start with the group-
theoretic model of incremental view maintenance used in
DBSP [8]. In Section 4, we extend our exploration to the
ring-theoretic model which simply adds a second operator
to the group to express more complex queries.
There are two common semantics for databases, the “set

semantics” in which every tuple occurs at most once and the
“bag semantics” in which tuples can occur multiple times [1].
The former gives us a data model in which the database is
a set of tables and each table is a set of tuples. The latter
gives us a data model in which the database is a set of tables
but each table is a multi-set of tuples. Each tuple is "tagged"
with a counter indicating its multiplicity. DBSP utilizes a
generalization of these two models to enable positive or
negative multiplicities of tuples which is called a “Z-set” [8,
14] because each tuple has a multiplicity from the integers
(Z). The benefit of allowing negative multiplicities is that
we can now talk about insertions of tuples and deletions of
tuples from the database in a unified way. A deletion of a
tuple is simply its insertion with a multiplicity of negative
one. A modification of a tuple is the deletion of that tuple
followed by the insertion of the modified value.
Considering our state to be Z-sets and our incoming up-

dates to be Z-sets as well (batches of tuples being inserted or
deleted), we see that the update operation forms an abelian
group. That is, our update is associative, commutative, and
every incoming Z-set update, 𝑢, has a corresponding "in-
verse" Z-set, 𝑢−1, such that update(𝑢,𝑢−1) = 0.

With this model of state and updates to state, we can
define operators over these Z-sets and queries composed
out of operators. Given certain properties on the operators,
we are able to guarantee the "incremental" computation of
query results: that is, work done to compute the result after
a new update can be proportional to the size of that update
rather than to the size of the entire database.
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The essential property of an operator that makes it effi-
ciently incrementalizable is that it is linear which is defined
as 𝑓 (𝑎+𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏) where + is the group operator. This
is equivalent to saying that operator 𝑓 is a homomorphism
over our group. We can see that if an operator is linear then
we can compute this operator incrementally (we already
have 𝑓 (𝑜𝑙𝑑_𝑑𝑏_𝑠𝑡𝑎𝑡𝑒) and when a new update comes in we
just do 𝑓 (𝑛𝑒𝑤_𝑢𝑝𝑑𝑎𝑡𝑒) + 𝑓 (𝑜𝑙𝑑_𝑑𝑏_𝑠𝑡𝑎𝑡𝑒)).

It turns out many useful operators are linear with respect
to this Z-set abelian group such as selection and projection in
database queries. Linearity is also composable, so any query
we can construct as a composition of linear operators will
be efficiently incrementalizable.
Another key category of operators is bilinear operators

which are binary operators 𝑓 (𝑎, 𝑏) that satisfy distributivity
over +. The classic example of a bilinear operator in data-
base queries is a join. We can think of bilinear operators as
functions that would normally cost N2 time in the database
instance size to compute, but in the incremental setting we
can compute them in time (update_size × N). Intuitively,
when a new tuple arrives on one input to the join we need
to check it against each existing tuple received on the other
input once to compute the join.
It turns out that quite expressive query languages from

databases are entirely incrementalizable in this model includ-
ing relational algebra, Datalog, grouping, and aggregation–
i.e. much of SQL and beyond. [8].
This abelian group with linear operators model offers

us considerable power, but is it compatible with eventual
consistency? In the next section, we give a construction for
combining group-theoretic incremental view maintenance
and lattice-theoretic eventual consistency.

3 Co-habitation of Abelian Groups and
Semi-lattices

When we first wanted to combine these two structures, we
asked the seemingly obvious question "Can the CRDT up-
date or CRDT merge operation be the abelian group update
operation?" First we will show why these two strawman
approaches cannot work and then dive into our multi-layer
solution.

Strawman 1: CRDT Update as Group Update: The up-
date operation of a CRDT must grow monotonically with
respect to some partial order. An abelian group update op-
eration must have an inverse update operation. For both
of these to be true, the group can only have one element
(rendering it useless for expressing application semantics):

Proof: Assume + is monotonically non-decreasing (∀𝑥,𝑦 :
𝑥 + 𝑦 ≥ 𝑥 . Then 𝑥 + −𝑥 ≥ 𝑥 and −𝑥 + 𝑥 ≥ 𝑥 . Adding x and
-x to the respective sides we get 𝑥 ≥ 0 and −𝑥 ≥ 0. We know
𝑥 + −𝑥 = 0 so 0 ≥ 𝑥 and 0 ≥ −𝑥 . So 𝑥 = −𝑥 = 0 for every x
in the group.

Strawman 2: CRDT Merge as Group Update: Recall
that a CRDT merge operation must be idempotent. We show
that if an abelian group operation is idempotent, then the
group must also be the one element group ({0}, +).
Proof: For any idempotent element 𝑥 in the group 𝐺 , we

have that 𝑥 +𝑥 = 𝑥 . Due to invertibility of +, 𝑥 must also have
an additive inverse, (−𝑥). Adding this to both sides yields
𝑥 = 0, meaning all elements must be the additive identity.
Thus, with an idempotent + operation, 𝐺 must be the one
element group ({0}, +).

Powering through the disappointment of these failed straw-
men, we find that there is still a way for CRDTs and IVM
groups to co-habitate! The trick is in separating the CRDT
from the group and adding a translation layer that allows
these two structures to co-exist. We first give a working
construction for this using a simple set CRDT that is in-
efficient but demonstrates how the group and semi-lattice
combine. In the next section, we provide a variant with a
performance-optimized CRDT based on delta-CRDTs [29].
The key observation to see how group and semi-lattice

structures can be combined is to think about how these two
structures are really being used in our data system. We have
some state of our data. We want to modify that state in
an incremental way. For that, we need this + operation that
forms an abelian group.We can then express dataflow queries
with linear and bilinear operators over that + operation.

Then what are lattices for in our data-intensive systems?
The role of the lattice is to allow us to replicate state
while being protected against nondeterminism of com-
puter networks. The network plays no role in our data
modification (+) or query evaluation. The network is a differ-
ent layer of the system. Much like we write our application
semantics without concern for how TCP is being used for
delivery, we can write our group-based or ring-based ap-
plication without concern for how our lattice is handling
network nondeterminism. Much like with TCP, we leave our
application alone with its + operation, and then at a lower
layer we propagate updates around the system wrapped
up in a nice robust semi-lattice. We call this construction a
"lattice-wrapper" and depict this idea visually in Figure 1.

3.1 The Very Simple Construction
The pseudocode for this construction is given in Listing 1.
At a high level, input updates arrive of type Z-set to apply
to the local group structure at a replica. We pass the Z-set
value into the group to modify the group state and update
the materialized views at that replica. We also convert this
incoming Z-set value into a semi-lattice value by pairing it
with a randomly generated unique ID. The (updateID, Z-set)
pair is propagated to other replicas which process this update
by keeping track of the set of updateIDs they have seen and
ignoring any repeated updateIDs. When the receiver hasn’t
seen the incoming updateID before, it adds it to its list of seen
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updates and passes the Z-set payload into its local group to
be processed. Our lattice state is a set of updateIDs which we
modify (merge) via set union - an associative, commutative,
and idempotent operation.

Note that in the design that we have described, we do not
enforce that updates arrive in FIFO order or causal order. It
is only a couple extra lines of code in our merge function to
do this (we wait until we see the updates in-order from the
sender before passing them into the group), but because our
update operation is an abelian group it is commutative, so
we don’t need to bother with any extra metadata or logic for
enforcing update ordering. This commutativity of the group
frees us from the worry of ordering; eventual consistency
and linearizability give the same results at the application
level for abelian group-based and ring-based applications.

Figure 1. We depict three replicas of our lattice-wrapped
view groups. Blue solid arrows are the incoming updates
to the database instance of type Z-set. Red dotted arrows
are CRDT merge operations being broadcast to each replica.
The green diamonds represent the lattice wrappers and we
see the solid blue updates are converted into dotted red
merges via the lattice wrapper. The conversion is depicted
by a purple semi-dotted arrow. We see that the updates are
passed through to the black group (circle) inside the lattice
wrapper. The red dot in the center is the materialized view
that users can observe and where the dataflow pours into.
We see that merge operations are received by the lattice
wrappers and converted into update operations that are then
passed through to the inner group structure.

3.2 The Performant Construction
The simple construction above requires each node to keep
track of the list of every updateID they have ever seen. To

Listing 1. Pseudocode for Z-set lattice wrapper construction
1 let mut my_group = Group::Zset::new();
2 let mut my_inbox = Lattice::Set::new();
3

4 fn processUpdate(&mut self, update_payload: &Zset)
{

5 self.my_group.apply(update_payload);
6 let update_id = Uuid::new_v4();
7 let update_wrapper = (update_id,

update_payload);
8

9 my_outbox.insert(update_wrapper);
10 neighbors.send(my_outbox);
11 }
12

13 fn receiveUpdate(&mut self, (incoming_uuid,
incoming_zset): (Uuid, &Zset)) {

14 if (!my_inbox.contains(incoming_uuid)) {
15 self.my_group.apply(incoming_zset);
16 my_inbox.insert(incoming_uuid);
17 }
18 }

improve on this metadata overhead, we give a construction
in this section that reduces this metadata to be proportional
to the number of replicas on average rather than the number
of updates in the system.
The lattice wrapper we use is similar to the delta-CRDT

lattice wrapper [29] and familiar in networking literature
as a part of the TCP protocol. In English, each replica has a
uniqueID and a local logical clock that it increments each
time it receives a local update to the group. It uses this
(uniqueID, localLogicalClock) pair as the updateID key to the
Z-set update payload. It sends the element of the map result-
ing from each update along to the other nodes in the system.
A replica receiving one of these map elements processes it
using the merge operation, which like before simply checks
whether that (uniqueID, localLogicalClock) is already in the
set of updates the receiving node has processed. To reduce
metadata overheads, the sequence of clock times per node
can be stored in heavily compressed representations as they
are long runs of contiguous integer values. The receiving
nodes will also acknowledge received updates to the sender
so the sender can garbage collect its map of update payloads
once each other replica has acknowledged hearing about that
update payload. The sender will re-send updates to nodes
that haven’t acknowledged their receipt after a fixed time
interval. This is like the construction used in [29] and you
can see that paper for more details.

4 Rings in Incremental View Maintenance
One of the major successes of databases is the power of
query optimizers which take a logical query plan (similar to
an abstract syntax tree) and search the space of equivalent
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dataflow graphs (physical query plans) for the one that will
have the best performance. The space of equivalent dataflow
graphs is defined in terms of different rewrite rules that
can be applied to the logical query plan without changing
the result of the query. These rewrite rules can be seen as
algebraic axioms on the operators in the query language.

Common optimization techniques include choosing what
order to execute joins in (associativity of join), choosingwhat
order to apply filters in (commutativity of selection), and
choosing whether to push filters before joins in the query
plan (distributivity of filters over join). One observation is
that the standard axioms that optimizers leverage for rela-
tional algebra form a semi-ring. A semi-ring at a high-level is
a structure with two operators where one is associative and
commutative, the other is just associative, and the second
operator distributes over the first operator (see Appendix for
full definition). With this observation, database researchers
have generalized the applicability of database techniques be-
yond relational algebra to any pair of operators that satisfy
the algebraic axioms of a semi-ring. This semi-ring perspec-
tive has been popular recently in databases for studying data
provenance [14], recursive queries [2], and incremental view
maintenance [18].

The reason that we focus on rings instead of semi-rings in
incremental viewmaintenance is because rings have inverses
on +, and + corresponds to the update operation on the data.
Thus, the + in a ring forms an abelian group and gives us the
nice properties we discussed in Section 2. The × operator in
the ring is analogous to join in relational algebra.
How does this picture of incremental view maintenance

as a ring instead of as a group change our picture and lat-
tice wrapper construction? The answer is that it doesn’t
need to change our lattice wrapper at all as the group and
lattice structures already operate independently. The ring
just means that the queries we express over the state of the
group can be optimized with rewrite rules and get more per-
formant dataflow graphs for the computation of views inside
our group.

5 Inverses, Two-Phase Sets, and the
Semantics of Deletion

In this section, we take a brief detour to discuss the interest-
ing differences in deletion semantics found in Z-sets com-
pared to CRDTs. We do not conclude that one semantics is
better or worse than another; we simply highlight the differ-
ences and observe that some applications would prefer one
and some would prefer the other.

Deletion semantics in CRDTs have been a long-standing
challenge. In order to satisfy the monotone update require-
ment, complex lattice structures have been introduced offer-
ing different tradeoffs for deletion semantics. The two-phase
set design [23], for example, circumvents monotone updates,
but runs into two other problems with deletion; the “natural”

single-node semantics of deletion are neither commutative
nor idempotent. Commutativity means the order of opera-
tions in a sequence doesn’t change the outcome, but if we
think about “insert A; delete A” vs “delete A; insert A” the
common meaning of this on a single node interface would
be that the result of the first operation sequence is the empty
set and the result of the second sequence is the set {𝐴}. This
non-commutativity leads the two-phase set design to treat
all deletions as if they occur after all insertions - a decision
that is quite unsatisfactory in the simulation of a single-node
user experience.

Another problem with this two-phase set design is that in
a common interface it should be possible to insert something,
remove it, and then insert it again. Under the idempotent
interpretation of deletion used in the two-phase set this is not
possible; the item can be inserted at most once and deleted
at most once. This deletion with at most once semantics is
often referred to as “tombstoning”.

To resolve these awkward semantics, the observe-remove
set (OR-set) [24] additionally tracks the causality of updates
to fix the idempotent deletions. The causality also fixes the
single-node experience of "delete A; insert A", but for concur-
rent writes ambiguity in semantics remains, so a user must
pick whether to default to deletes first or inserts first.

Incremental view maintenance literature has focused
on the single-node setting and in that setting they are able
to take a very simple and clean view of deletions. We treat
the database instance as a Z-set under the hood. An inser-
tion or deletion from the database increments or decrements
the multiplicity of the specified tuple. For user-facing multi-
set semantics we may display all negative multiplicities as
0. For a CRDT-view of this we can think of each tuple as
having a pn-counter as one of its columns representing the
multiplicity of the tuple.
The Z-set semantics itself is not a valid semantics for a

state-based CRDT as the update operation is not monotone
and the state changes in non-idempotent ways, but we know
that those concerns can be handled in our lattice wrapper
layer, so what about the deletion semantics themselves? For
Z-sets, insertions and deletions are fully commutative, so
if a user issues a delete and expects the count to go from
0 to 0 then this will be broken. Fully commutative updates
also lead to the (insert A; delete A) vs (delete A; insert A)
anomaly from two-phase sets. However, prevention of both
of these scenarios can be handled at the client by ignoring
deletions when the observable count at the client is 0. The
"observable count at the client" is exactly the updates that
occur causally before the new update at that client.

One anomaly that can still occur is if two people see there
is a count of one and simultaneously decide to delete it. In Z-
set semantics this would result in a count of -1 if the deletions
both occur within the gossip time window ("concurrently").
The best semantics for such a case is application specific,
but the Z-set construction with client-side guards avoids
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tombstoning and achieves something that could reasonably
be called "causal multiset semantics".

6 Discussion and Future Work
Exploring these two algebraic lenses allows us to get the
best of both worlds in our systems. Our research group is
interested in building algebra-aware systems in which the
algebraic properties of application logic are known and can
be utilized by the system as much as possible. In this paper,
we began this journey by connecting just two of the many
algebraic optimizations known in computer science. In fu-
ture work, we plan to draw connections to the semi-ring ap-
proaches to provenance [14] and fixed point computation [2]
from databases as well as to areas of computer science be-
yond databases. Algebra has played a central role in modern
cryptography including the use of group and rings for pub-
lic key cryptography [25] and the use of ideal lattices for
fully homomorphic encryption [13].1 Algebra also shows up
in program analysis [6] as well as high-performance com-
puting [17, 34]. Once we have a system that understands
algebraic properties, we hope to apply the learnings from
these other fields to it as well.
We have started this work using semi-lattices and have

released a Rust lattices crate (https://hydro-project.github.
io/hydroflow/book/lattices_crate.html) that gives a simple
interface for developers to fuzz test whether their custom
lattices satisfy the necessary algebraic properties. We are
working on extending this crate to support rings, groups,
fields, and semi-rings to make building systems out of these
primitives more ergonomic for developers.

7 Related Work
Our study of the co-habitation of semi-lattices and rings
is inspired by recent work in incremental view mainte-
nance such as DBSP [8], DBToaster [18], and Differential
Dataflow [20]. DBSP takes a group-theoretic view of updates
and focuses on single-node updates without query optimiza-
tions. DBToaster was another single-node system based on
rings and supporting traditional relational query workloads
with optimized and incremental updates and queries. Differ-
ential Dataflow is an incremental computation framework
that considers the distributed case, although not specifically
in the context of eventual consistency.

To our knowledge, we are the first work to explicitly con-
nect the algebraic view of incremental view maintenance
from the databases literature and the algebraic view of even-
tual consistency from the distributed systems literature. Other
works have explored distributed IVM in the context of trans-
actions [15] and data warehousing [3, 32, 33].

We have focused our attention in this paper on state-based
CRDTs rather than op-based CRDTs. The reason for this is

1Different type of lattice than the semi-lattice used in CRDTs.

that state-based CRDTs are modeled naturally as algebraic
semi-lattices and their relationship to rings is interesting.
Op-based CRDTs can be thought of as delegating the semi-
lattice properties to a networking layer and dealing only with
the application layer properties. In a sense, this makes the
op-based CRDT perspective and the co-habitating rings and
semi-lattices perspective similar - the mechanisms for ensur-
ing exactly once delivery over the network can be treated
separately from the mechanisms for managing changes to
application-visible data.

Op-based CRDTs require that the update operation be as-
sociative and commutative, forming a commutative monoid.
This is much like an abelian group except it drops the require-
ment that updates have inverses. Some existing op-based
CRDTs like counters [24] already have an inverse operation,
forming an abelian group and being amenable to DBSP-style
incrementalization. Other op-based CRDTs like set CRDTs do
not support inverses, but they raise the interesting question
of what classes of operators and queries over commutative
monoids are automatically incrementalizable. The definitions
of linearity and bilinearity are the same for commutative
monoids as for abelian groups. We leave a formal treatment
of this connection to future work.
𝛿-CRDTs [29] are a design that minimizes the network

overheads of state-based CRDT communication. Much like
IVM, they make the network utilization proportional to the
size of an update batch rather than proportional to the size
of the state.

8 Conclusion
We have presented a way to utilize two different algebraic
views of data systems, CRDTs and incremental view main-
tenance, in the same holistic system. The seemingly incom-
patible semi-lattice and ring structures can be made to co-
habitate by using ring structures at the "application layer"
and semi-lattices at the "network layer". With this, we are
able to perform incremental computation of complex query
plans while guaranteeing coordination-free strong eventual
consistency.
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A Abstract Algebra Background
A semi-lattice is an set 𝐿 equipped with a binary operation ⊔
that satisfies three properties: associativity, commutativity,
and idempotence.

associativity: ∀𝑎, 𝑏, 𝑐 ∈ 𝐿 : (𝑎 ⊔ 𝑏) ⊔ 𝑐 = 𝑎 ⊔ (𝑏 ⊔ 𝑐)
commutativity: ∀𝑎, 𝑏 ∈ 𝐿 : 𝑎 ⊔ 𝑏 = 𝑏 ⊔ 𝑎

idempotence: ∀𝑎 ∈ 𝐿 : 𝑎 ⊔ 𝑎 = 𝑎

Any valid semi-lattice operator induces the following par-
tial ordering on the set 𝐿: 𝑎 ⊔ 𝑏 = 𝑏 → 𝑎 ≤ 𝑏.

A monotonically non-decreasing operation, update(), with
respect to a partial ordering ≤ satisfies ∀𝑎 ∈ 𝐿 : 𝑎 ≤
𝑢𝑝𝑑𝑎𝑡𝑒 (𝑎)

A group is a set 𝐺 equipped with a binary operation +
that satisfies two properties: associativity and invertibility.
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A group is also required to have an identity element, 0, satis-
fying ∀𝑔 ∈ 𝐺 : 0 + 𝑔 = 𝑔 + 0 = 𝑔.

invertibility: ∀𝑔 ∈ 𝐺∃ − 𝑔 ∈ 𝐺 : 𝑔 + (−𝑔) = 0
A abelian group is simply a group where + is also commu-

tative.
A ring is a set S equipped with two binary operations

+ and × satisfying the following algebraic properties: + is
associative, commutative, has an additive identity, and has
additive inverses, × is associative and has a multiplicative
identity, and × is distributive over + (both left-distributive
and right-distributive). On their own, the + operation forms
an abelian group over S and the × operation forms a monoid
over S.

Formalizing the terms not already defined above:
+ has an additive identity if ∃0 ∈ 𝑆 : ∀𝑎 ∈ 𝑆 : 𝑎 + 0 = 𝑎.

We call this element “0” the additive identity.
+ has an additive inverse if ∀𝑎 ∈ 𝑆 : ∃𝑏 ∈ 𝑆 : 𝑎 + 𝑏 = 0. We

say b is the additive inverse of a in this case, and will often
denote this element b as 𝑎−1.
× has a multiplicative identity if ∃1 ∈ 𝑆 : ∀𝑎 ∈ 𝑆 : 𝑎 × 1 =

1× 𝑎 = 𝑎. We call this element “1” the multiplicative identity.
× is left-distributive over + if ∀𝑎, 𝑏, 𝑐 ∈ 𝑆 : 𝑎 × (𝑏 + 𝑐) =

(𝑎 × 𝑏) + (𝑎 × 𝑐)
× is right-distributive over + if ∀𝑎, 𝑏, 𝑐 ∈ 𝑆 : (𝑏 + 𝑐) × 𝑎 =

(𝑏 × 𝑎) + (𝑐 × 𝑎)
a semi-ring is just a ring where the + operation does not

need to be invertible.
a map 𝜑 from one ring 𝑅 to another ring 𝑆 is a ring ho-

momorphism if it satisfies: (1) 𝜑 (𝑎 + 𝑏) = 𝜑 (𝑎) + 𝜑 (𝑏), (2)
𝜑 (𝑎𝑏) = 𝜑 (𝑎)𝜑 (𝑏), (3) 𝑣𝑎𝑟𝑝ℎ𝑖 (1) = 1, and (4) 𝑣𝑎𝑟𝑝ℎ𝑖 (0) = 0.

a ring homomorphism 𝜑 is a ring isomorphism if and only
if 𝜑 is bijective. Two rings are isomorphic if and only if there
exists a ring homomorphism between them.

B Impossibility of Strawman Approaches
for Rings

If the CRDT operations do not work in an abelian group, is it
possible to have them work in a ring? We quickly illustrate
why this simple approach does not work either. In section 3,
we showed the problems with combining an abelian group
with a CRDT. Since the + operation of a ring forms an abelian
group, the arguments in section 3 already disallow the possi-
bility of either CRDT merge or CRDT update being + in our
ring. That leaves ×.
The main issue with × being the CRDT merge operation

is that × would then have to be idempotent, after which
a crucial theorem from abstract algebra about idempotent
rings gets in our way. This theorem can be found in standard
abstract algebra textbooks [11].

Theorem Any ring with an idempotent × operation is
isomorphic to many copies of the Boolean ring, ({0,1}, XOR,
AND).2

Proof: For any element e in the ring R idempotent under
×, we can form a map 𝜑 : 𝑅 → 𝑅𝑒 × 𝑅(1 − 𝑒), defined by
𝜑 (𝑥) = (𝑥𝑒, 𝑥 (1 − 𝑒)). It can be easily proven that 𝜑 is a
ring isomorphism, so that for any two elements 𝑥,𝑦 in 𝑅,
𝜑 (𝑥𝑦) = 𝜑 (𝑥)𝜑 (𝑦), and 𝜑 (𝑥 + 𝑦) = 𝜑 (𝑥) + 𝜑 (𝑦). Thus, if
all elements are idempotent, choose any element 𝑥 , so that
𝑅 � 𝑅𝑥 × 𝑅(1 − 𝑥). Since 𝑅𝑥, 𝑅(1 − 𝑥) are subrings of 𝑅, we
can decompose both of them into two subrings of their own
and repeat the process. This decomposition continues until
each subring only has two elements, namely 0 and 1. Giv-
ing these subrings an associative, commutative, invertible
+ operation and an associative, commutative, idempotent ×
operation yields the Boolean ring ({0, 1}, 𝑋𝑂𝑅,𝐴𝑁𝐷).

If the × operation in our ring is a valid CRDT merge oper-
ation, then this forces + to be the XOR operation on {0, 1}.
However, XOR is not monotone with respect to the partial
ordering induced by × (1 ≤ 0), and therefore, + cannot be
the CRDT update operation.

2The Boolean ring is better known as Z/2Z, the integers modulo 2. The XOR
and AND operations are equivalent to + and × operations in the integers
mod 2.

22


	Abstract
	1 Introduction
	2 Background
	2.1 Semi-Lattices and Conflict-Free Replicated Data Types
	2.2 Groups and Incremental View Maintenance

	3 Co-habitation of Abelian Groups and Semi-lattices
	3.1 The Very Simple Construction
	3.2 The Performant Construction

	4 Rings in Incremental View Maintenance
	5 Inverses, Two-Phase Sets, and the Semantics of Deletion
	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	9 Acknowledgements
	References
	A Abstract Algebra Background
	B Impossibility of Strawman Approaches for Rings

